
Giving your data a face � Cherno� plots in

Annika Hamachers

German Police University, Münster

annika.hamachers@dhpol.de

Abstract

This short tutorial demonstrates the use of the faces() function from

the R package aplpack to visualize multidimensional data in the pictogram

style introduced by Herman Cherno� in 1973.

1 Intro

So called �Cherno� faces� are a quite extraordinary way to visualize multidimen-
sional data in a creative, almost playful way that yet can be easily interpreted.

The concept was �rst promoted by Herman Cherno� in his 1973 paper, �The
Use of Faces to Represent Points in k- Dimensional Space Graphically�. Cherno�'s
basic idea was to make use of the fact that humans can 'read' other human faces
quite intuitively: We easily discern and memorize a large variety of facial features
and expressions. Hence, presenting data as faces � rendering the single variables as
facial features � would facilitate to "represent multivariate data, subject to strong
but possibly complex relationships, in such a way that an investigator can quickly
comprehend relevant information."

1

http://wexler.free.fr/library/files/chernoff%20(1973)%20the%20use%20of%20faces%20to%20represent%20points%20in%20k-dimensional%20space%20graphically.pdf
http://wexler.free.fr/library/files/chernoff%20(1973)%20the%20use%20of%20faces%20to%20represent%20points%20in%20k-dimensional%20space%20graphically.pdf

2 Set-up

In R, we can map our data into the ranges of the Cherno� face parameters with the
faces() function from the aplpack package. This acronym stands for 'Another Plot
Package' and is worth checking out ways beyond its ability to produce Cherno�
faces: it holds functions for summary plots, icon plots, bagplots etc.

Alongside this package, we would want to load readr into the current R session
for conveniently importing our data that we hold in a csv �le (if those packages are
not in your library, yet, uncomment the �rst two lines).

#install.packages('readr')

#install.packages('aplpack')

library(readr) # package to read in the CSV

library(aplpack) #package containing faces()

3 Quick Cherno� Faces

For this tutorial we read in data that stem from a meta analytical literature review
that compared communication science research papers in international journals
with those in German journals. For each scope, the data table contains count data
for the di�erent research methods, subdisciplines, and topics that were encountered:

Reading in those data, make sure to keep the headers, so you can use the
variable names as labels later:

myData <- read.csv("Chernoff.csv", sep=";", header=TRUE)

Producing Cherno� faces from such a dataframe, is � at least in theory � super
easy: We just call faces() on the dataframe and specify the face type, we would
like to get (0 standing for line drawings, 1 for color-�lled faces, and 2 for a little
bit silly Santa Claus faces). However, in our case this results in an error:

Error in x - min(x): nicht-numerisches Argument für binären Operator

This error is due to the fact, that our dataframe holds more variables than there
are Cherno� face features available: The maximum number of di�erent traits, we
can display, is 15, so, we can only depict a subsection of our variables:

2

faces(myData[,2:16], face.type = 0)

This produced two quite distinct faces � one for each of the two rows in our
dataframe. If you have a lot of units of observation, you would, of course, get a hole
bunch of faces (see for instance this blog post on fansided.com that neatly depicts
NBA team stats for the season of 2017 as Cherno� faces). However, we would
not recommend applying faces() to a dataframe with too many rows because it
will get very challenging for your audience to intuitively grasp the meaning of the
di�erent faces.

4 Editing the Faces

Without additional information on how the function operates, it is, of course,
impossible to interpret and further style those faces in a meaningful way. We
need to know, which variable in the dataset is being associated with which facial
feature.

In general, faces() renders the variables in the order of their appearance as
depicted in this table:

3

https://fansided.com/2017/05/19/nylon-calculus-bravely-staring-down-radar-chart-backlash/

Column Feature

1st height of face
2nd width of face
3rd shape of face
4th height of mouth
5th width of mouth
6th curve of smile
7th height of eyes
8th width of eyes
9th height of hair
10th width of hair
11th styling of hair
12th height of nose
13th width of nose
14th width of ears
15th height of ears

In color-�lled faces, the distinct colors of facial features are generated by aver-
aging over sets of variables (1st & 2nd = face; 1st, 2nd, & 3rd = lips; 7th & 8th =
eyes; 8th, 9th, & 10th = hair; 12th & 13th = nose; 14th & 15th = ears)

When we want to know, what exactly this means in the case of our data, we
can call the function again, adding the argument print.info=TRUE . If we are only
interested in this info and do not need the faces themselves again, we can set
plot.faces to FALSE :

faces(myData[,2:16], print.info=TRUE, plot.faces=FALSE)

effect of variables:

modified item Var

"height of face " "observation"

"width of face " "interview"

"structure of face" "contentAnalysis"

"height of mouth " "mediaSystems"

"width of mouth " "mediaContent"

"smiling " "mediaUse"

"height of eyes " "mediaEffects"

"width of eyes " "interpersonalCommunication"

"height of hair " "methods"

"width of hair " "theDiscipline"

"style of hair " "print"

"height of nose " "A.V"

"width of nose " "internet"

"width of ear " "games"

"height of ear " "individualCom"

4

As you can see, there is a lot going on in our faces... To make it easier for the
spectator to infer meaning from them, we should try to reduce the variables we
want to display and aggregate some of the facial features.

Maybe, it would be a good start to solely focus on the di�erences in research
methods. Accordingly, we would only have to choose three associated features
and set the rest to zero. Since we are dealing with count variables in our case,
we might want to choose features that change gradually. So, the shape of the
face or the styling of the hair would be rather bad choices; those would be more
appropriate for categorial variables. Also, the curve of the smile will very likely be
associated with a positive or negative evaluation and we'd like to keep it neutral.
Instead, since our everyday understanding of an observation has something to do
with 'watching', we want this variable to be represented by the size of the eyes,
interviews (which involve talking) by the size of the mouth, and content analyses
(which do not necessarily have to but could involve listening) by the size of the
ears. Therefore, we simultaneously want to adjust their heights and widths:

newData <- myData[,1:16]#copy the original data

newData[,2:16] <- 0 #set everything except the scope variable to zero

override columns that will be associated with the height and width

of the eyes with the original counts for interviews

newData[,5:6] <- myData$interview

override columns that will be associated with the height and width

of the eyes with the original counts for observations

newData[,8:9] <- myData$observation

override columns that will be associated with the height and width

of the eyes with the original counts for content analyses

newData[,15:16] <- myData$contentAnalysis

Make sure to add 1 to the column values from the table above because we will
derive features starting from the second column of our new data, again leaving out
the scope variable.

Plotting these new data, we also take the chance to add a title (main), set the
labels to the journal scope and adjust their font size with cex (for the full list of
options available for the faces() function, please refer to the aplpack documenta-
tion):

faces(newData[,2:16], face.type = 0,

main="Facing Methods in Communication Science",

labels=newData$Scope, cex=1.1)

5

https://cran.r-project.org/web/packages/aplpack/aplpack.pdf
https://cran.r-project.org/web/packages/aplpack/aplpack.pdf

Those faces tell you right away, that the German research landscape in commu-
nication science is clearly dominated by content analyses whereas internationally
surveys and observations are more prevalent.

You can either export your �nal faces � just as any other R �gure � from the
plot panel in R Studio or by wrapping the faces() function into a device function
matching the desired output format where you specify the name and path to which
it is to be saved, e.g. like this for a pdf �le:

pdf(file = "/myFaces.pdf")

faces(newData[,2:16], face.type = 0,

main="Facing Methods in Communication Science",

labels=newData$Scope, cex=1.1)

dev.off()

If you want to edit this �le later as described in the next section, we strongly
recommend to choose a device that supports scalable vector graphics (such as svg,
pdf, or postscript).

5 Postproduction

Since R is primarily a tool for data analysis and has limited means for styling its
output, we would always recommend to perform some further editing steps outside
of R to make the faces appear more professional � just as also data viz superstar
Nathan Yau suggests on his awesome blog Flowingdata.

Particularly, we would want to use a professional graphic design tool like Adobe's
Illustrator Illustrator or its free dupe Inkscape in order to retrace the lines, color
the faces, style the fonts, and add a legend to the plot.

Before switching to this tool (in my case Inkscape), we'll have to do one more
thing in R: We create an additional Cherno� face from a 1x15 matrix where all
values are set to zeros. This baseline face will serve as our legend:

6

https://flowingdata.com/2010/08/31/how-to-visualize-data-with-cartoonish-faces/
https://www.adobe.com/de/products/illustrator.html
https://inkscape.org/

dummyData <- matrix(0, ncol = 15, nrow = 1)

faces(dummyData, face.type = 0, labels="")

Now, we can open our favorite design tool and simply drag and drop our faces
and the legend onto the canvas and start editing. What I for instance did to touch
up the graphic a bit was:

1. Set the background to a neutral gray (open up the 'Document Properties'
menu by pressing Control + Shift + D , then click on 'Background color')

2. Make the lines for our original faces thicker to set them apart from the legend
face (open up the 'Fill and Stroke' menu by pressing Control + Shift + F ,
then select 'Stroke style' and adjust the 'Width')

3. Fill in the faces with colors (in the same menu switch to 'Fill', mark the
�lled square ('�at color') and choose a color you like). If you want di�erent
features to appear in di�erent colors, make sure to select the face and hit
Control + Shift + G several times until you see frames like this that tell you
that the elements of the face have been 'ungrouped':

7

Hint: Though it makes the faces less anthropomorphic, it is nowadays con-
sidered good style not to choose skin-toned colors for Cherno� faces in order
to avoid racial stereotyping (unless of course the skin-color conveys an actual
meaning in your data). So, instead, I chose to make the faces look a bit like
the white walkers from GoT � giving them blue irises and gray hair and skin
� which also goes nicely with the background and seemed neutral enough.
Moreover, I colored the features of interest (the mouths, eyes, and ears) in a
lighter gray to make them pop.

4. Adjust texts (double-click text items to style them and/or hit T to change
your cursor to text insertion mode to add more text elements)

5. Align all elements (change the cursor back by hitting S , drag everything in
place, and/or hit Control + Shift + A to access the 'Align' menu that helps
you to space out elements equally).

So, this is what my �nal graphic looked like:

8

	Intro
	Set-up
	Quick Chernoff Faces
	Editing the Faces
	Postproduction

