
Codeless Topic Modelling with

Annika Hamachers

German Police University, Münster

annika.hamachers@dhpol.de

Abstract

This tutorial walkes the reader through a work�ow that employes a topic

modelling algorithm - nameliy Latent Dirichlet Allociation (LDA) - in KN-

IME.

NLP (Natural Language Processing) tasks are one of the big strengths of the
KNIME Analytics platform. And as such, also topic modelling and the necessary
preprocessing of your data can be easily accomplished with it � particularly since
there exists a plethora of already pre-built work�ows ready for download on the
KNIME Hub. For the purpose of this tutorial, we for instance heavily rely on a
work�ow created by Julian Thiel and kindly provided for reuse and modi�cation
under the creative commons license.

The complete work�ow, we adjusted for our purposes and that we will walk
though step by step in this tutorial looks like this:

1

https://hub.knime.com/knime/spaces/Examples/latest/08_Other_Analytics_Types/01_Text_Processing/25_Topic_Detection_LDA
https://hub.knime.com/knime/spaces/Examples/latest/08_Other_Analytics_Types/01_Text_Processing/25_Topic_Detection_LDA
https://creativecommons.org/licenses/by/4.0/


Figure 1: The work�ow we will build

The core building block of this work�ow is KNIME's Topic Extractor node
that performs Latent Dirichlet allocation (LDA) on a set of distinct texts (called
`documents' in the realm of NLP).

EXCURSE ON LDA

LDA � which was �rst proposed by Pritchard, Stephens, and Donnelly in the
context of population genetics in 2000 and applied to machine learning in
2003 by Blei, Ng, and Jordan � is an algorithm that builds on a generative
statistical model for an unsupervised classi�cation of texts in order to detect
some natural groups of items (aka words) even when we're not sure what
we're looking for. Those natural groups can thus be interpreted as underlying
semantic structures (aka topics) of the texts. In an extremely simpli�ed way,
we can say, LDA treats each document as a mixture of topics, and each topic
in turn as a mixture of words. What LDA does is that it calculates a) how
prevalent each of the identi�ed topics is in each document and b) how much
each word in the entire corpus of texts contributes to each topic. We then
�lter the most representative words for each topic and can try to make logical
sense of them (aka interpret topics in a meaningful way). For more technical
details on the algorithms, please refer to the original articles (here and here)
or this very insightful Medium post.
Please, be also aware that LDA is not synonymous with topic modelling per
se but is just one of multiple possible approaches to choose from � though
probably the most common one. LDA will work well in many scenarios.
Depending on the type of texts that you want to �nd topics in, other ap-
proaches might, however, be more useful (e.g., fuzzy c means for particularly
short texts such as Twitter posts). As already discussed in my general intro
to KNIME, only because something can be done easily in KNIME without
much background knowledge, this does not necessarily mean that it is par-
ticularly useful!

Yet, if you decide, LDA is the way to go, you cannot dive into topic extraction

2

https://medium.com/analytics-vidhya/the-intuition-behind-latent-dirichlet-allocation-lda-fb1e1fb01543
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.cluster.fuzzycmeans.FuzzyClusterNodeFactory2
http://dx.doi.org/10.13140/RG.2.2.14032.43522
http://dx.doi.org/10.13140/RG.2.2.14032.43522


right away, but have to present thoroughly prepared data to the Topic Extractor
node. Thus, the starting node for this work�ow needs, of course, to be a reader
node � in our case an Excel Reader because the data we want to work with are
stored in this format. Con�guring this reader is easy: Just provide the path to
where the data can be found and make sure to check `Table contains column names
in row number' if your spreadsheet has headers like mine. The other settings can
be left at their default.

Figure 2: The Excel Reader Node

The node itself nicely shows you the data table it creates from your con�gura-
tions. In our case we read in posts we gathered from the website of an organization
called `Institut für Staatspolitik'. Those posts promote the publications of this
organization which is known for its far-right and German-nationalist world view.
We wanted to investigate if these views are also mirrored in topics detected across
the supposedly neutral and `scienti�c' publications they sell.

However, you can also spot a little `S' next to the `Post' column header. This
means that KNIME read in `Post' as a string variable because it detected that it
consists of text input. The Topic extractor unfortunately only wants to work with
a very speci�c type of string: a document. And accordingly, the next node is a
String to Document converter. By telling this node which column to interpret
as documents (in our case we only have the column `Post' available anyway), we get

3



an updated data table that has been appended by a `Document' column. The other
options can remain at their defaults (even tokenization because we will perform and
explain this step later at another node).

Figure 3: The Strings to Document Node

You can check the result by right-clicking on the node and selecting `String and

4



document output table'.

Figure 4: Output of the Strings to Document Node

After this, we encounter a gray node symbol with quite a lengthy description.
This is a so-calledmeta node � a wrapper node containing a bunch of other nodes.
Such a wrapping makes sense when you have a step in your work�ow which contains
a lot of di�erent sub steps � such as data preprocessing prior to the actual analysis
as in our case. If we were to include them in the main work�ow right away, this
work�ow would become quite overcrowded and confusing. Thus, a meta node is a
nice way of ordering things. To access and con�gure such a meta node, we need to
select `Wrapped Meta Node' and then `Open' from its context menu.

Figure 5: Opening the Metanode

5



This opens a work�ow within the work�ow consisting of eight preprocessing
steps which we will explain in the upcoming paragraphs.

Figure 6: The unwrapped Metanode

The �rst node you encounter in this chain is the `Markup Tag Filter'. The
name and description of the node are a bit confusing: It says that it removes all
markup language tags which basically just means that it removes all styling from
the text and, thus, makes headings, abstracts, body text etc. all the same. Since
our input data are not styled in a particular way, at all, choosing this node might
appear quite pointless at �rst glance. However, it is still useful for us because
it serves as our tokenizer: By con�guring this node with a word tokenizer that
recognizes the language of the input correctly, it splits the texts in the document
column into its single words which is an important precondition for topic modelling
because now reoccurring words (aka tokens) can be counted.

6



Figure 7: The Markup Tag Filter

If you do not have the right selection options for your language available here,
you'll have to install the matching KNIME Textprocessing Language Pack. Just go
to `Help' and `Install New Software' and search for it.

Figure 8: Installing KNIME Textprocessing

And do not worry if your machine seems to lag a bit on installing additional
extensions. Some of them are quite big and may take some time to be copied
onto your hard drive and unfortunately the progess bar that informs you on the
installation status is hidden quite well at the buttom right of the KNIME GUI.

7



Figure 9: Installation Progress

The next node in line is the `Stanford Tagger'. This node assigns a part of
speech (POS) tag to each token in the documents. This step can be treated as
optional, however, it helps when you want to be able to di�erentiate words that
are spelled the same but ful�l a di�erent function in a sentence (e.g., to tell apart
the token `�y' as in `I am going to �y to Italy next summer.' and `�y' as in `I was
annoyed by the �y buzzing around my head'.)

Figure 10: Con�guring the Tagger

The `Stanford Lemmatizer' is also an optional node and usually not very
helpful in cases where you want to process non-English text. This node is useful
when you want di�erent variants of a word to be treated as the same (e.g., `dish'
and `dishes' or `communicate' and `communicating') because it truncates the tokens
in the documents in order to create the root `lemma' of each term. Therefore, it
removes in�ections, e.g., in case of plurals, pronoun case, and verb endings. Since
lemma recognition is based heavily on the Part-Of-Speech (POS) tags, either the
Stanford tagger node or the POS tagger node has to be applied before using it.

8



Figure 11: Con�guring the Lemmatizer

Next, remove all punctuation (such as ,.:;()/. . . ) from the corpus.

Figure 12: Erasing Punctuation

The `N Chars Filter' node lets you drop short words from your corpus. For
this work�ow, I set the �lter so that all words will be ignored that do not at least
consist of three characters.

9



Figure 13: Con�guring special characters to be removed

If you are interested in only analysis plain text, you usually also will want to drop
numbers and, thus, include the `Number Filter'. This node lets you eliminate
either tokens that are all numbers (`Filter terms representing numbers') or even
tokens that might be a mixture of letters and numbers (`Filter terms containing
numbers').

Figure 14: Con�guring numbers to be removed

Natural language usually contains a lot of words which do not carry a lot of
meaning or are particularly uninteresting for you, so that you would not want them
to be considered in your topic analysis because they might dilute the results. Those
terms are called `stop words' in NLP and KNIME has its own node to exclude them.
The `Stop Word Filter' can be con�gured basically in two ways: You can either

10



use an already built-in list with stopwords identi�ed for a speci�c language and/or
provide a costum list with stopwords you gathered yourself.

Figure 15: Con�guring stop words to be removed

If you choose to use a custom list, you will have to connect a `Table Creator'
node to the second input port of the `Stop Word Filter' and con�gure it by adding
the terms you want excluded.

Figure 16: Adding customized stop words to be removed

11



The case converter node �nally lets you transform the entire text to lower
case letters. This is quite useful because otherwise words which are only capitalized
because they appear at the beginning of a sentence would be treated as additional
tokens.

Figure 17: Converting everything to lower case

Now, we are �nally done preprocessing our data and can close the meta node
again and tackle the main task of this work�ow: perform the actual topic extraction
with the LDA node. The Flow Variables and Memory Policy panels can be left
untouched, again. You will, however, want to specify the number of distinct
topics the algorithm shall look for and the number of most relevant words
per topic you want to be able to access later. As for the number of topics, �nding
an appropriate value here usually involves a bit trial and error: You start with
a good initial guess on the number of topics that might be `hidden' in your text
corpus and try some alternative solutions. Then you just pick the solution that
provides you with topics that can be interpreted in the most meaningful way.

The additional options can usually be neglected: The seed can be left at the
default or be chosen randomly. This is just a necessary starting point to draw
random numbers from. The alpha parameter de�nes the prior weight of a topic
k in a document. Normally a number less than 1, e.g. 0.1, is a good choice to
model sparse topic distributions (i.e. few expected topics per document). The beta
parameter de�nes the prior weight of a word w in a topic. Normally a number much
less than 1, e.g. 0.001, is a good choice to model sparse word distributions (i.e. few
expected words per topic). A higher number of iterations makes the result of
your calculations more robust/reliable but also slows down the performance. 1000
is usually a good value here. If your computer is very slow, you might want to
lower it. The number of threads is only interesting for parallel computation if
you want to speed things up. It lets you declare in how many threads the input
document collection shall be split for the calculation Since my machine has eight
cores, I choose that number.

12



Figure 18: Setting up the LDA

The �rst output port produces the table for the document classi�cation. Here,
KNIME calculates the probability to belong to a certain topic for each document
and �nally assigns one of the ten topics to each of the posts based on those values.

Figure 19: LDA document classi�cation

The second output port provides us with the topic terms table: Here we see
which terms from the corpus contributed the most to each of the topics the algo-
rithm di�erentiates and thus assigns di�erent weights to.

13



Figure 20: LDA topic terms

If you want to access those results also outside of KNIME (e.g., when you want
to perform additional statistical analysis on them or share them with someone who
does not have KNIME), it is a good idea to also incorporate writer nodes into your
work�ow. In this particular case, I included two CSV Writers that save the tables
in comma separated format � which can easily be read into R or opened with MS
Excel. For writer nodes the default settings are usually quite feasible, all you have
to do is specify an output location on your computer (the last part of which is the
name you want the �le to have) which tells the node where to save your results.

14



Figure 21: Saving the topics to disc

Now, we have our topics, can interpret them, and elaborate on them. But just
as for most analyses, we might also want to visualize the result in a way that is
more appealing than a plain data table. A particularly nice means to visualize
the topic modelling results is to create a word cloud that displays the terms the
algorithm identi�ed as most imported in a circular shape (a cloud), renders their
size proportional to their weight and colors them according to the topic they account
for.

KNIME has an extra node for such a word cloud (the JavaScript powered Tag
Cloud node). Yet, in order to incorporate also the last-mentioned feature (the
coloring of di�erent topics), we need to push the data through another node �rst:
In the Color Manager we de�ne which color is associated with which topic (we
can choose from prede�ned sets or set colors manually with HEX values, RGB
values etc.)

15



Figure 22: Con�guring colors for the tag cloud

We then can con�gure the very last node � the Tag Cloud itself. Here we can
play around with several settings such as the maximum number of words to appear
in the cloud, the size of the plot or features like the font family or font size range
(on the second panel of the con�guration dialogue). What is important here, is,
however, to select the correct column for the words to be displayed and to display
them according to their `Weight' variable.

16



Figure 23: Con�guring the tag cloud

Now, we have everything set-up and can run the entire analysis. This time,
however, we therefore select `Execute and Open View' from the context menu of
the last node:

Figure 24: Executing the entire work�ow

17



This way, we do not only get all the calculations done but are provided with an
interactive graph that lets us explore the tag cloud we created from the weighted
topic terms and lets us make some additional adjustments (e.g., such as switching
to another font).

Figure 25: The �nal tag cloud

If you allready installed KNIME on you machine and it looks di�erent: Do
not worry! I changed the appearance of my version to `dark' via the `Preferences'
section you can access by clicking on `File'. Moreover, the di�erent panels which are
shown by default when launching KNIME can vary a bit depending on the version
of your installation (mine is KNIME 3.7.2). If you are missing some of them, please
click `View' in the top left and select additional panels to be displayed.

Beware however that (as we'll see later) some nodes have multiple output or
input ports because they can read or produce di�erent types of data. In those
cases, you'll have to read the node description and check, which port processes
which data and, thus, which one you'll have to choose in order to work properly
with other nodes.

Of course, the work�ow, we built here, was fairly simple and most of the time
you will need to put together much more complex node chains for your purposes.
Even with the help of the node description panel this might become quite a tedious
task because you would likely have to browse through a lot of nodes and try out
several di�erent con�gurations before the work�ow �nally does what you want it
to do. Luckily, however, you normally do not have to build entire work�ows from
scratch. There are good chances that somebody might have already done exactly
what you are up to (or at least something similar) and that you can download
an entire, nicely documented and pre-con�gured work�ow from KNIME Hub. So,
ALWALYS search there �rst before starting your own work!

18


