
Reporting with :

Literate Programming, BIRT, & Guided Analytics

Annika Hamachers

German Police University, Münster

annika.hamachers@dhpol.de

Abstract

This paper compiles a short overview of three di�erent ways of integrating

data analysis with reporting features in KNIME: I will introduce the Jupyter

notebook integration, BIRT reports and the possibility to build work�ows for

Guided Analytics.

1 Introduction

Tools that enable you to showcase your analyses and share the results with the
world are important features of every data scientist's toolkit. KNIME o�ers several

1



such opportunities. However, some of them might not be quite as sleek as people
familiar with programming languages such as R or Python might be used to.

In this text, I will give a quick introduction into the three most prominent
reporting tools that can be used from KNIME: the Jupyter notebook integration,
the BIRT report editor, and work�ow integrations for so-called 'Guided Analytics'.

2 Jupyter Notebook Integration

The term 'literate programming' refers to a paradigm in computer science which can
be loosly understood as writing programs that are readable by humans. Usually,
this means that the code and the documentation of the code are contained in the
same �le.

Probably the most popular form of literate coding that many data scientists
using R or Python make use of those days are so called 'notebooks' which take
code snippets and their documentation and render them into a �le format that is
easy to share (such as an HTML document) and in which the code is still executable.
Notebooks are therefore a sleek way to share your analysis and walk others through
them at the same time and are thus, probably the most common format to exchange
work between data scientists.

KNIME adopts the notebook approach by o�ering an integration for so-called
jupyter notebooks which are executed in a python environment.

Figure 1: A work�ow containing a Container Output node

Via the jupyter integration you cannot only access code snippets stored in such
notebooks from within your work�ows, but also easily call KNIME work�ows from
within a jupyter notebook without having to set up a jupyter server.

In order to do this, you need to prepare yourself in two steps:
1. You have to add output nodes to your work�ow that can interact with

Python (in our case this means incorporating a textbf`Container Output' node for
table data that hands the data from the �rst output port of the topic extractor,
the results from the document classi�cation, down to Python).

2. You need to install the KNIME python package from PyPI by typing `pip
install knime' into your (Anaconda) console.

2



Figure 2: Installing KNIME support for Python

When you are all set up, type `jupyter notebook' into your console.

Figure 3: Running a Jupyter notebook

This launches the jupyter dashboard in your local browser which shows already
existing notebooks on your machine. If you want to create a new notebook for your
KNIME work�ow, click `New' and select `Python'.

Figure 4: Creating a new Jupyter notebook

By default, new notebooks get the title `Untitled. . . '. Thus, the �rst thing you
will likely want to do is change this. Therefore, just click onto the title and rename
it:

Figure 5: Renaming the notebook

Now, you can populate your notebook with content. To insert new content cells,
click the `+' icon from the editing panel. By default, new cells are code cells. If

3



you want to create plain markdown text or a heading to structure your notebook,
select another formatting from the editing panel.

We start our notebook with a title and an informative subheading and then
import all the Python packages we will need:

Figure 6: The �rst lines

Next, we make our work�ow accessible in jupyter and print it into the notebook.
Therefore, we need to provide 1) the entire path to our local installation of KNIME
(to knime.exe), 2) the �lesystem path to the KNIME workspace that contains
our work�ow, and ) the name of our work�ow itself. We save all three elements
into variables which we can then provide as arguments for the knime.workflow()

function:

Figure 7: Code for calling the workspace

This inserts a scalable vector graphic of our entire KNIME work�ow into the
jupyter notebook.

Figure 8: Inserted SVG

If no output is created and you get an error message instead, it is likely that
your KNIME installation is missing the necessary extension to create SVG �les. In
this case, head back to KNIME itself and add it:

4



Figure 9: Installing SVG Support

Next, we load the data we want the analysis steps saved in the work�ow to
be applied to into the notebook. We therefore read a new excel �le in (this time
containing posts from the now forbidden right-wing part NPD) and turn it into a
pandas dataframe called df . Calling df shows us that everything went well:

Figure 10: Data import

We can call the work�ow on these data by using the knime.workflow() function
with the same arguments as above, but this time saving the work�ow into an object
(we called ours wf ) instead of printing it. Next, we set the data_table_inputs of this
object to be our data frame (we have to use the index `[0]' since we have only one
dataframe to o�er but the function usually handles entire lists of data frames) and
call its execute() function. This causes the KNIME Analytics Platform to run in
the back and hand make the results available in Python as the data_table_outputs

attribute of our wf object:

5



Figure 11: Executing the work�ow

Now, we could use these topic classi�cations for further analysis in the notebook.
This looks quite cute and handy at �rst because you certainly feel more like

a `real' data scientist when you share something notebook-style. Yet, to me this
seems a bit gimmicky and not actually useful because you need Python to run
KNIME and the person you want to collaborate with also needs Python and the
KNIME extension for Python set-up and running. Moreover, notebooks (no matter
if jupyter, R notebooks etc.) were invented as a means of managing the source code
for an analysis and the associated human-readable documentation in the same
�le. Since KNIME work�ows themselves can be annotated nicely (and you can
do Python analysis within them) and they mostly do not feature actual source
code, they are `literate', anyway. Thus, it's usually a better idea to annotate them
thoroughly and share them right away instead of making things more complicated
by wrapping everything with a notebook.

3 BIRT-Reports

The so-called BIRT reports, KNIME o�ers are much more useful in my opinion.
They take the idea of data sharing one step further, in that they make the addressee
of the report completely independent from KNIME: The KNIME Report Designer
extension lets you take the results you produce with your work�ow and incorporate
them in a report template you can edit and style to your liking and export into
multiple di�erent �le formats almost anyone can open (such as PDF or HTML).

6



Figure 12: Installing KNIME Report Designer

Just like for the jupyter integration, we will have to add speci�c nodes to the
work�ow that make the output of our analyses available in the reporting environ-
ment. Particularly, we will have to incorporate `Data to Report' nodes for all
tables we want to access later and `Image to Report' nodes for all graphics we
want to appear in the report:

Figure 13: Work�ow with reporting nodes

Once we have prepared our work�ow accordingly, we can create a new report
by selecting `New' from the `File' menu and choosing the `Report' wizard:

7



Figure 14: Creating a new report

This opens a completely new environment that looks quite di�erent from the
default KNIME GUI you are used to work with for your work�ow creation: The
only thing that remains the same is the KNIME explorer to navigate your �le
system. In place of your work�ow canvas, you now have a Property editor as the
main window that lets you style the content of your report along with a preview
of this report on the right. On the bottom left you now have the Palette with
quick tools and the selection of di�erent content items to insert into your report.
And right above, you have the Data set view that lets you access the data and
graph objects you created with the reporting nodes you integrated into your original
work�ow.

Figure 15: The BIRT report GUI

If you are familiar with web design, editing your content for a BIRT report will
feels quite natural to you. If not, the reporting may come with quite a bit of a
learning curve because styling report elements is basically done with HTML tags

8



in KNIME. We will not deep-dive into this here, if you are hooked and want to
�nd out more about content creation and styling for BIRT reports, please check
out the associated webpage.

Figure 16: The HTML editor

When all content is created and all styling is done, you let KNIME build the
report in the output format you desire. Therefore, you can either search for the
little grey icon with the play button in the top panel or go to `Run' and then `View
Report'.

Figure 17: Selecting a report output format

This is much more convenient than the jupyter integration. Yet, I fear that
as a `pro' you will deeply miss an option to integrate BIRT reports with LaTeX.
Also, I would guess that the user group of this extension is quite small: If you want
to produce a webpage and are familiar with markup and scripting languages such
as HTML, CSS, and JavaScript, you are likely to already have access to a more
powerful and comprehensive IDE for web development and want to use this. And

9

https://docs.knime.com/2020-07/report_designer_user_guide/index.html


if you want to create just an ordinary .pdf or .docx report and are not familiar with
HTML etc. you will probably not want to spend the additional time to learn it
and just copy'n'paste data tables and graphics into your documents as usual. So,
BIRT reports are also not a feature that would make KNIME extraordinarily sexy
for the presentation of results and collaborative projects.

4 Guided Analytics

However, KNIME indeed does have one feature that is super useful for collabora-
tion and presentation alike and that is extremely well put together: KNIME o�er
support for so-called Guided Analytics. The term `guided analytics' refers to the
development of interactive visual interfaces for business intelligence and scienti�c
applications. Those applications let other people (such as customers or collabora-
tors) explore your data, extract information from it or even create their own reports
from it in just the way you allow it /or assist them with: You guide them though a
meaningful analysis of your data step by step via a web interface that you create:

Figure 18: An exemplar web interface o�ering Guided Analytics; souce: https:

//www.youtube.com/watch?v=ELqZ1NjQffg&t=12s

Those web interfaces are very similar to what you might already know from
Shiny or Dash which can be applied to R or Python. The particularly nice thing
for guided analytics with KNIME, however, is that, again, no programming skills
are necessary for the creation of such like apps: You create them in a pretty straight-
forward manner by just adding another layer (and `auditing' layer) to your analysis
work�ow that restricts and manages access to your data and data processing oper-
ations:

10

https://www.youtube.com/watch?v=ELqZ1NjQffg&t=12s
https://www.youtube.com/watch?v=ELqZ1NjQffg&t=12s


Figure 19: Exemplar work�ow integrating Guided Analytics, source: https://

www.youtube.com/watch?v=v2-f5eiM0mc

However, there is one big (not to say `huge') disadvantage that comes with this
great idea and is also why we will not explore guided analytics further: Guided
analytics apps need to be deployed to the KNIME WebPortal which in turn is a
feature of the commercial KNIME Server and thus extremely extensive (at least
from a non-enterprise, private person's perspective).

11

https://www.youtube.com/watch?v=v2-f5eiM0mc
https://www.youtube.com/watch?v=v2-f5eiM0mc

	Introduction
	Jupyter Notebook Integration
	BIRT-Reports
	Guided Analytics

