
Advanced Network Visualization

with and

Annika Hamachers

German Police University, Münster

annika.hamachers@dhpol.de

Abstract

R in general, and the R package igraph in particular are powerful tools

for network analysis. However, producing beautiful network visualizations

from R that are suitable to actually be published in academic papers or

presentations can be quite a hassle. This tutorial demonstrates how to create

visually appealing network graphs by focusing on solutions for two common

problems: 1) incorporating compelling and easily generated network layouts

from Gephi and 2) adding custom icons to be able to distinguish between a

large variety of attributes even in black and white publications.

1

Contents

1 Set-up 3
1.1 Preparing the data . 3
1.2 Getting the R session ready . 4

2 Creating Basic (aka ugly) Networks in R 5
2.1 Creating a Network Object . 5
2.2 Modifying a Network Graph within R 7

3 Integrating R and Gephi 10
3.1 Creating Beautiful Layouts with Gephi 11
3.2 Exporting Gephi Layouts . 14
3.3 Importing Gephi Layouts into R . 14

4 Di�erentiating Nodes 17

5 Adding PNGs as Shapes 22
5.1 Selecting Icons . 22
5.2 Adding to shapes() . 23

6 Saving Network Graphics 25

2

1 Set-up

This paper is neither an introduction to network visualization with R nor to Gephi.
It rather focuses on the two speci�c problems mentioned in the abstract and as-
sumes that the readers already have some experience with both tools. If however,
you are completely new to this topic, I strongly recommend you read this awesome
tutorial by Katherine Ognyanova and check out her blog www.kateto.net - this will
de�nitely get you set up.

1.1 Preparing the data

Disclaimer: The data we toy around with for the purpose of this tutorial stem from
a project on online radicalization � particularly on the social ties so-called foreign
�ghters had with members of the Sala�st milieu in Germany. If you are curious
about the results, follow this link to request the full-text of the �nal publication.

Luckily, preparing our data for what we are up to, is quite easy because R and
Gephi can work with (almost) equally presented material: In both cases we need
to prepare two spreadsheets � one containing information on all the nodes of the
network and one containing the edge information.

The node list (see Figure 1) may hold as many variables describing the nodes
as we like (e.g. their gender, their age etc.). However, two columns are mandatory:
a numeric identi�er variable called 'Id' and the 'Label' (aka the name) of the node
we want later to be displayed in the graphs.

Figure 1: The node list

The edge list (see Figure 2) works quite similar. We can add as many variables
describing the relationship between two nodes as we like, as long as we provide
two columns that identify which nodes the edges are supposed to connect. For R
this means telling the system 'from' which node 'to' which other node a line is to
be drawn (even if it is an undirected graph). In Gephi however, the associated
columns must be called 'Source' and 'Target'. What is important in both cases
is, that this will not work providing the node labels, these two columns have to
contain the right node 'Id's matching the ones in the node list.

3

https://kateto.net/wp-content/uploads/2016/06/Polnet%202016%20R%20Network%20Visualization%20Workshop.pdf
https://kateto.net/
https://www.researchgate.net/publication/348518424_Aus_dem_radikalen_Netzwerk_in_den_Jihad_Radikale_Prediger_als_Schlusselakteure_im_Umfeld_deutscher_Syrienreisender

(a) Declaration for R (b) Declaration for Gephi

Figure 2: The edge list

We can save these spreadsheets either in .xlsx or .csv format, however, for
convenience, I'd recommend saving the Gephi input as .xlsx and the R input as
.csv � in my case both times with UTF-8 encoding since I use data that contain
non-ASCII characters.

1.2 Getting the R session ready

Now, that the raw data are ready, we also need to set up R itself. The �rst thing we
would want to do therefore is to load all necessary packages: We rely on readr for
the data import, igraph for the basic network visualization, extrafont for better
readability, xml2 for the Gephi import, and png for incorporating our custom icons:
If those packages are not yet in your R library, please run the install.packages()

command �rst for each package.

#install.packages('readr')

#install.packages('igraph')

#install.packages('extrafont')

#install.packages('xml2')

#install.packages('png')

library(readr) # package to read in the CSV

library(igraph) #R's most powerful network tool

library(extrafont) #access beautiful fonts

library(xml2) #XML importer, necessary for parsing Gephi output

library(png) #needed to transform pngs into rasters for the net

The extrafont package we use right away, so we can access all the fonts that are
installed on our device. Choosing a custom font can enhance the readability/quality
of network graphs tremendously!

The very �rst time, we want to grant R access to our font library, we'll have to
run font_import() . This registers these permanently, so you will never have to run
this again and can comment it out as I have done.

With fonts() you can check which fonts are available to you.

4

LaTeX users like myself, however should include one additional step because
they might �nd it di�cult to embed fonts other than from the 'Computer Modern'
family. So, just run font_install('fontcm') to also include those.

#font_import()

install.packages('fontcm')

font_install('fontcm') # import 'CM' font families for LaTeX

fonts() # See what font families are available to you now.

[1] "Agency FB"

[2] "Algerian"

[3] "Arial Black"

[4] "Arial"

[5] "Arial Narrow"

[6] "Arial Rounded MT Bold"

...

Then load the fonts matching your output device (e.g. 'win' on a Windows
machine):

loadfonts(device = "win") # use device = "pdf" for pdf plot output.

2 Creating Basic (aka ugly) Networks in R

Building network objects with plain igraph is easy � though hardly ever results in
something pretty right away.

2.1 Creating a Network Object

Creating the basic network from the prepared data is pretty straight forward:
First, we read in the nodes and the edges separately with read.csv() (remember-

ing to keep the attribute names with header=TRUE and choosing the right separator,
here ; , and encoding, in our case UTF-8-BOM):

links <- read.csv("RData/Edges_neu.csv", header=TRUE, sep =";",

as.is=T, fileEncoding="UTF-8-BOM")

nodes <- read.csv("RData/Nodes_neu.csv", header=TRUE, sep =";",

as.is=T, fileEncoding="UTF-8-BOM")

Then, we pass the edge dataframe to a command called graph_from_data_frame() .
We tell this function that the associated nodes (here called 'vertices') are to be
found in the nodes dataframe and also provide the information that our edges are
to be treated as undirected (directed=FALSE).

Calling the created network object, we simply named 'net', shows us that ev-
erything worked out �ne:

5

net <- graph_from_data_frame(d=links, vertices=nodes, directed=FALSE)

net

IGRAPH 022699e UN-- 152 478 --

+ attr: name (v/c), Label (v/c), Geschlecht (v/c),

| Rolle_aggregiert (v/c), Kern (v/c), Weight (e/n),

| Kommunikation (e/c), Unterst (e/c)

+ edges from 022699e (vertex names):

[1] 9 --49 13--126 13--135 13--160 14--99 14--121 15--86

[8] 15--121 17--83 19--51 21--204 22--204 23--204 50--135

[15] 54--134 55--104 56--104 57--104 1 --7 3 --5 3 --8

[22] 3 --45 3 --122 3 --135 4 --18 4 --61 4 --64 5 --13

[29] 5 --45 5 --135 5 --137 5 --6 6 --7 6 --8 6 --19

[36] 6 --20 6 --51 7 --8 7 --20 5 --8 8 --12 8 --17

+ ... omitted several edges

The output tells us that we successfully created an IGRAPH which is undirected
(UN) and has 152 nodes and 478 edges. It then lists the attributes of the network
� each time indicating if it applies to the nodes (v) or the edges (e) and if it is a
character (c) or numeric (n) variable. Finally the output starts to list all edges.

But how does this network look like? We access the default network graph by
simply calling R's plot() function:

plot(net)

1

2

3

4

5

6

7
8

9

10
1112

13

14

15

16

17

18

19

20 212223

2425
2627

28
29
30

31

32

33

34

35

36
37

38
39

40

41
42

43

44

45

47

48

49

5051
5253

54

55
56

57

58

59

60

61

62

63

64

65
66

67

68
69

70

71

72

81
82

83

86
87

88

89

90

91
92

93

94

95

96

97

98

99

100

101
102

103

104

105

106

107

108

109

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

147

148149

150

151

152

154

155

160

164
166

167168

169

171
172

174

175

203

204

205

206

207

208

209

210

212

213

215

217

6

2.2 Modifying a Network Graph within R

This default graph, however, is not a pretty sight: The nodes display their IDs
instead of comprehensive labels and cling together so much that they seem to sit
on top of each other. Let's try to use R's built-in features to tidy things up a little
bit!

Since we would like to make the important players in the network stand out
immediately, we start by creating a variable that saves each node's degree � which
is just the number of connections it has to other nodes in the network.

degrees <- degree(net)# save the number of edges for each node

From now on, we can use this variable to make the size of the nodes proportional
to this value.

Next, we would like to adjust the network layout itself (aka the coordinates
underlying the distribution of the nodes). In R, we specify those coordinates by
adding a layout parameter to the plot() function. In igraph, there are quite a
lot of nice layouts to choose from that come handy in di�erent situations (for large
networks, for small ones, for ego networks etc.):

Figure 3: Examples of igraph layout options; source: https://kateto.net/

The default algorithm, R automatically uses, if no layout is speci�ed, is layout

_with_fr . This is igraph's implementation of the Fruchterman-Reingold algorithm.
This force-directed algorithm usually is a good choice because it reduces edge cross-
ing to a minimum, re�ects inherent symmetries, and makes edge lengths uniform
(for technical details please refer to the original paper (Fruchterman & Reingold
1991)). The result is usually an easy to interpret graph that displays nodes with
similar connections close to each other.

7

https://igraph.org/r/doc/layout_with_fr.html
https://dcc.fceia.unr.edu.ar/sites/default/files/uploads/materias/fruchterman.pdf
https://dcc.fceia.unr.edu.ar/sites/default/files/uploads/materias/fruchterman.pdf

However, since most layouting algorithms initialize weights at random, we'd get
quite a di�erent graph, each time we would run e.g. plot(net, layout=layout_with_fr) .
To ensure, the coordinates stay exactly the same, we therefore �rst save the layout
into its own variable:

fr <- layout_with_fr(net)

Depending on the layout, you'd like to use, it can proof useful to normalize it
by setting the boudaries for the x and y coordinates to -1 to 1:

fr_norm <- norm_coords(fr, ymin=-1, ymax=1, xmin=-1, xmax=1)

Making sure that the normalized graph does not rescale (rescale=F), we can
now use this layout along with the degree variable for the vertex.size parame-
ter. At the same time, we add some further styling. We tell R to slightly curve the
edges (edge.arrow.size=.2), make them thinner(edge.width=.5), label the nodes ac-
cording to the actual 'Label' column in the dataframe (vertex.label=V(net)$Label),
make the label color "black", the node itself "gray", adjust the label size (vertex.label.cex)
also proportionally to the degree, change the font (vertex.label.family) to some-
thing we made available with the extrafont package, and make this font bold
(vertex.label.font=2):

plot(net, layout=fr_norm, rescale=F, edge.width=.5,

edge.curved=.3, vertex.label=V(net)$Label,

vertex.label.color="black", vertex.color="gray",

vertex.frame.color="#555555", vertex.size= 9+degrees/9,

vertex.label.cex=0.5+degrees*0.008,

vertex.label.family="CM Sans", vertex.label.font=2)

8

SR1

SR2

SR3

SR4

SR5

SR6
SR7

SR8
SR9

SR10
SR11

SR12

SR13

SR14
SR15

SR16

SR17

SR18

SR19
SR20

SR21
SR22SR23

SR24SR25
SR26

SR27

SR28

SR29SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37
SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51
SR52

SR53

SR54

SR55

SR56

SR57

SR58

SR59

P1

P2
P3P4

P5

P6

P7

P8

P9

P10

P11 P12

P13

U1

U2

U3
Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

Log9

Log10

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

Sch1

Sch2

Sch3 Sch4

Sch5

Sch6

Sch7

Sch8

Sch9

Kon1

Kon2

Kon3

Kon4

Sch10

Füh1

Füh2

Füh3

Füh4

Füh5
Füh6

Füh7

Füh8

Füh9

Füh10

Sch11

Sch12

Sch13

Sch14

Sch15

Füh13
Füh12

Füh11Kon5

A15
A16

Sch16

A17

A18

Kon6

Kon7

Sch17 Sch18

A19

Kon10

Kon11

Kon12

kon8

Kon9

Sch19

Sch20

A20

A21

Füh14

Kon13

This already looks much more professional. Yet, as you can probably tell right
away, getting the node and label sizes right takes a lot of fumbling around in trial
and error mode. Moreover, we still ended up with a lot of overlapping nodes.

A common way to �x this in R, is to try to �nd a multiplying factor for the
layout that spreads out everything as much as needed and then set the boundaries
for the x and y axes to the range of these multiplied values:

fr_new <- fr_norm*2.6

plot(net, layout=fr_new , rescale=F, edge.width=.5,

xlim=range(fr_new [,1]), ylim=range(fr_new [,2]),

edge.curved=.3, vertex.label=V(net)$Label,

vertex.label.color="black", vertex.color="gray",

vertex.frame.color="#555555", vertex.size= 9+degrees/9,

vertex.label.cex=0.5+degrees*0.008,

vertex.label.family="CM Sans", vertex.label.font=2)

9

SR1

SR2

SR3

SR4

SR5

SR6
SR7

SR8
SR9

SR10
SR11

SR12

SR13

SR14
SR15

SR16

SR17

SR18

SR19
SR20

SR21
SR22SR23

SR24SR25
SR26

SR27

SR28

SR29SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37
SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51
SR52

SR53

SR54

SR55

SR56

SR57

SR58

SR59

P1

P2
P3P4

P5

P6

P7

P8

P9

P10

P11 P12

P13

U1

U2

U3
Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

Log9

Log10

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

Sch1

Sch2

Sch3 Sch4

Sch5

Sch6

Sch7

Sch8

Sch9

Kon1

Kon2

Kon3

Kon4

Sch10

Füh1

Füh2

Füh3

Füh4

Füh5
Füh6

Füh7

Füh8

Füh9

Füh10

Sch11

Sch12

Sch13

Sch14

Sch15

Füh13
Füh12

Füh11Kon5

A15
A16

Sch16

A17

A18

Kon6

Kon7

Sch17 Sch18

A19

Kon10

Kon11

Kon12

kon8

Kon9

Sch19

Sch20

A20

A21

Füh14

Kon13

In our case, a factor of 2.6 seems just right, however, this also took some time
to �gure out and the resulting node labels are barely dechi�erable anymore. So,
this is also not a good option and we should maybe switch to a tool which is more
convenient for network visualization.

3 Integrating R and Gephi

While R is extremely powerful for statistical analyses of network data, the free
and open source software Gephi certainly outperforms it when it comes to drawing
network graphs, especially when you are short in time and do not want to have
to tweak layout parameters manually in try and error mode until the graph looks
at least somewhat similar to what you want it to. Gephi features a graphical user
interface that lets you intuitively create beautiful graphs within seconds with just
a few clicks.

If you are completely new to Gephi and want to dive deeper into network viz
with that tool, I recommend this introduction.

10

https://gephi.org/tutorials/gephi-tutorial-quick_start.pdf

In this paper, I won't explore those basics but concentrate on one particular
feature of Gephi that even many advanced users do not know of: You can import
Gephi graphs into R for further analyses or additional custom styling.

3.1 Creating Beautiful Layouts with Gephi

What makes Gephi so handy are the build-in layouting algorithms that are pro-
grammed to suit many di�erent situations and automatically produce easily inter-
pretable graphs. Here you can �nd descriptions for the di�erent algorithms you can
choose from in Gephi's layout panel (see Figure 4). Two algorithms, I particularly
like, are Gephi's interpretation of the Fruchterman-Reingold algorithm, we already
found implemented in igraph, (though di�erently, as we will see), and the before
mentioned Force-Atlas2 � the 'home-brew layout of Gephi'.

Figure 4: The layout panel in Gephi

In Figure 6 you can see Gephi's Fruchterman-Reingold version at work: Similar
as in igraph, it tries to reduce edge crossing and arranges nodes according to shared
connections, thereby displaying actors with similar ties close to each other. This
time however, the entire network is shaped into a round sphere canceling out the
di�erent repulsive powers of the nodes. To create such a network, just select the
algorithm from the drop-down menu of the layout panel in the overview window of
Gephi, hit "Run" and wait until all nodes are put into place. If you, however, later
want to render node sizes proportional to their degree in R (like we do), make sure
adjust the sizes already in Gephi in order 'save' enough space around important
nodes. Select "Node" and "Ranking" from the appearance panel above and choose
values that represent appropriate degree di�erences for your data:

Figure 5: Applying the Fruchterman-Reingold algorithm in Gephi's

11

https://gephi.org/users/tutorial-layouts/

Such a layout is not only highly visually appealing but also useful to give an
overview of all the actors in a network and their relative importance because it
automatically places actors with high degrees in the center and lesser connected
actors quite literally in the periphery.

Figure 6: Applied Fruchterman-Reingold algorithm in Gephi

Yet, because the nodes lost their di�erent repulsive powers, unconnected nodes
are now placed as close to each other as connected ones which makes it quite di�cult
to recognize the actual relationships. Moreover, recursive relationships (marked by
the yellow square) and isolates (marked in pink) become almost impossible to spot.
Therefore, I like to use this visualization only to introduce a network as a whole
and the di�erent node types, I'll perform my analyses on but switch to Force-Atlas2
when I go to the nitty-gritty of the underlying structures.

Force-Atlas2 however, usually needs two or three clicks more to look good:
'Close' nodes unfortunately have the save tendency to sit on top of each other as in
R. Therefore, it is usually a good workaround not to wait until the algorithm has
�nished running but rather hit "Stop" immediately after starting "ForceAtlas2",
then change the layout to "Expansion", and hit "Run" several times to spread
the nodes out as much as desired and �nally run "Noverlap" to eliminate node
overlapping.

This normally produces beautiful graphs that are much easier to interpret be-
cause unconeccted components stand out quite well. And even better: In Gephi
you can manually adjust those nodes and drag them exactly where you want them
to be:

12

Figure 7: Repositioning nodes manually in Gephi

Personally, I like to drag all isolates and small components to the left of the
main graph to make them stand out even more:

Figure 8: The �nal Force-Atlas2 layout

13

3.2 Exporting Gephi Layouts

Once you are satis�ed with your layout, exporting it is easy: Just click "File >
Export > Graph �le"!

Figure 9: Exporting a graph �le

In the next window, give it a name and location of your pleasing and choose
".gexf" as �le type:

Figure 10: Selecting a �le type

3.3 Importing Gephi Layouts into R

The �le that has just been created is a special type of xml �le, which looks quite
intimidating at �rst sight. Luckily, we are basically only interested in two attributes
hidden in it: the x and the y value each node's viz:position :

To access those values from R, we now need to write a block of code that 1)
reads in xml-formatted data, 2) parses it and saves all position tags, and 3) extracts
all x and y values:

myXml <- read_xml("RData/core.gexf")

position <- xml_find_all(myXml, "//viz:position")

x_vals <- xml_attr(position, "x")

y_vals <- xml_attr(position, "y")

Now, we combine both data columns into a single dataframe � keeping eight
decimal places and then turn those values into proper numeric values.

14

Figure 11: Anatomy of the gexf �le

df <- data.frame(cbind(x_vals, y_vals))

options(digits=8)

df$x_vals <- as.numeric(df$x_vals)

df$y_vals <- as.numeric(df$y_vals)

As the �nal importing step, we transform the dataframe into a matrix, adjust
the matrix dimensions according to our two columns, and normalize also this layout
to make x and y each range from -1 to 1.

mat <- as.matrix(df)

mat2 <- matrix(mat, ncol = ncol(df), dimnames = NULL)

norm_mat2 <- norm_coords(mat2, xmin = -1, xmax = 1, ymin = -1,

ymax = 1, zmin = -1, zmax = 1)

Now, we can plot our original network onto the coordinates from Gephi:

plot(net, layout=norm_mat2, rescale=F, edge.width=.5,

vertex.label=V(net)$Label,

vertex.label.color="black", vertex.color="gray",

vertex.frame.color="#555555", vertex.size= 9+degrees/9,

vertex.label.cex=0.5+degrees*0.008,

vertex.label.family="CM Sans", vertex.label.font=2)

15

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

Füh1

Füh2

Füh3

Füh4

Füh5

Füh6

Füh7

Füh8
Füh9

Füh10

Füh13

Füh12

Füh11

Füh14

Kon1

Kon2

Kon3

Kon4

Kon5

Kon6

Kon7

Kon10

Kon11

Kon12

kon8

Kon9

Kon13

Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

Log9

Log10

Sch1

Sch2

Sch3
Sch4

Sch5

Sch6

Sch7

Sch8

Sch9
Sch10

Sch11

Sch12

Sch13

Sch14

Sch15

Sch16

Sch17

Sch18

Sch19

Sch20

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

U1

U2

U3

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

SR9

SR10

SR11

SR12

SR13

SR14

SR15

SR16

SR17

SR18

SR19

SR20

SR21

SR22

SR23

SR24

SR25

SR26

SR27

SR28

SR29

SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37

SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51

SR52

SR53

SR54

SR55

SR56 SR57

SR58

SR59

But wait! Doesn't this plot look somehow odd? Yes, indeed: The layout is
right but the nodes themselves are all in the wrong places. This is because our
node list (Figure 1) was not sorted, Gephi however does sort the nodes and now R
is assigning the coordinates in the wrong order. As soon as we sort the nodes in
our original csv �le by Id and read in the data, again, everything is �ne:

16

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

SR9

SR10

SR11

SR12

SR13

SR14

SR15

SR16

SR17

SR18

SR19

SR20

SR21

SR22

SR23

SR24

SR25

SR26

SR27

SR28

SR29 SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37

SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51

SR52

SR53

SR54

SR55

SR56

SR57

SR58

SR59

P1

P2

P3
P4

P5

P6

P7

P8

P9
P10

P11

P12

P13

U1

U2

U3

Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

Log9

Log10

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

Sch1

Sch2

Sch3

Sch4

Sch5

Sch6

Sch7

Sch8

Sch9

Kon1

Kon2

Kon3

Kon4

Sch10

Füh1

Füh2

Füh3

Füh4

Füh5

Füh6

Füh7

Füh8

Füh9

Füh10

Sch11

Sch12

Sch13

Sch14

Sch15

Füh13

Füh12

Füh11

Kon5

A15

A16

Sch16

A17

A18

Kon6

Kon7

Sch17

Sch18

A19

Kon10

Kon11

Kon12

kon8

Kon9

Sch19

Sch20

A20 A21

Füh14

Kon13

4 Di�erentiating Nodes

Now we have quite a decent layout to work with. Yet, the graph still does not tell
us much.

Looking at the levels of the variable "Rolle_aggregiert" (German for "aggre-
gated role"), we �nd that our data feature actors with seven di�erent roles within
the network:

levels(as.factor(V(net)$Rolle_aggregiert))

[1] "Anwerber" "Führungsperson" "Kontaktmann"

[4] "LogSchleu" "Prediger" "sonstigeUnterst"

[7] "SR"

Currently, it is relatively hard to tell those roles apart immediately just by their
label (the "P"s are for instance all Sala�st preachers, "SR" are Syria returnees etc.).

17

It would be much easier, if we would �nd a sleek way to di�erentiate di�erent roles
visually from one another.

The easiest way to achieve this, is to color di�erent values of a (factor = cate-
gorial) variable di�erently by simply setting the vertex.color to this factor:

plot(net, layout=norm_mat2, rescale=F, edge.width=.5,

vertex.color= factor(V(net)$Rolle_aggregiert),

vertex.label.color="white",

vertex.frame.color="#555555", vertex.size= 9+degrees/9,

vertex.label=V(net)$Label, vertex.label.cex=0.5+degrees*0.008,

vertex.label.family="CM Sans", vertex.label.font=2)

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

SR9

SR10

SR11

SR12

SR13

SR14

SR15

SR16

SR17

SR18

SR19

SR20

SR21

SR22

SR23

SR24

SR25

SR26

SR27

SR28

SR29 SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37

SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51

SR52

SR53

SR54

SR55

SR56

SR57

SR58

SR59

P1

P2

P3
P4

P5

P6

P7

P8

P9
P10

P11

P12

P13

U1

U2

U3

Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

Log9

Log10

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

Sch1

Sch2

Sch3

Sch4

Sch5

Sch6

Sch7

Sch8

Sch9

Kon1

Kon2

Kon3

Kon4

Sch10

Füh1

Füh2

Füh3

Füh4

Füh5

Füh6

Füh7

Füh8

Füh9

Füh10

Sch11

Sch12

Sch13

Sch14

Sch15

Füh13

Füh12

Füh11

Kon5

A15

A16

Sch16

A17

A18

Kon6

Kon7

Sch17

Sch18

A19

Kon10

Kon11

Kon12

kon8

Kon9

Sch19

Sch20

A20 A21

Füh14

Kon13

Such a network is much more interesting. However, the editors of many aca-
demic journals or books do not accept colored graphs. For those cases, we would
have to �nd a way to convey di�erentiating information in black and white or
grayscales.

18

One approach would be to only ever highlight one particular role at a time. We
could for instance choose to only make the preachers stand out. Therefore, we start
by creating a new, blank grouping variable "role_2" and assign all empty content
to it. We then override those empty cells with the role "Prediger" but only for
rows, were the original role was also "Prediger". Likewise, we create a new labeling
variable "label_2" that only copies the original label for rows where the role is
'Prediger' and leaves all other cells blank.

V(net)$role_2 <- ""

V(net)$role_2[V(net)$Rolle_aggregiert=="Prediger"] <-

nodes$Rolle_aggregiert[V(net)$Rolle_aggregiert=="Prediger"]

V(net)$label_2 <- ""

V(net)$label_2[V(net)$Rolle_aggregiert=="Prediger"] <-

nodes$Label[V(net)$Rolle_aggregiert=="Prediger"]

We can then hover over the two di�erent values of those new varibles, assigning
them the levels "black" and "white" for the vertex.color and vertex.label.color

(make sure to reverse the order here).

plot(net, layout=norm_mat2, rescale=F, edge.width=.5,

vertex.color= as.character(factor(

V(net)$role_2,labels = c("white", "black"))),

vertex.frame.color="#555555", vertex.size= 9+degrees/9,

vertex.label=V(net)$label_2, vertex.label.color=

as.character(factor(V(net)$role_2,labels =

c("black", "white"))),

vertex.label.cex=0.5+degrees*0.008,

vertex.label.family="CM Sans", vertex.label.font=2)

19

P1

P2

P3
P4

P5

P6

P7

P8

P9
P10

P11

P12

P13

This would look certainly look good in a publication. However, it is still frustat-
ing to loose all the information on the other nodes. An idea to solve this problem
would be to di�erentiate nodes not by color but by node shape. And indeed, igraph
has a built-in function shapes() that yields ten di�erent shape strings:

shapes()

[1] "circle" "crectangle" "csquare" "none"

[5] "pie" "raster" "rectangle" "sphere"

[9] "square" "vrectangle"

Of those ten, however, only eight are useful straight away ("none" would mean
not to draw a shape at all, and raster is reserved for a raster image that has to be
de�ned). Luckily, in our case we would only need to display seven di�erent roles,
so we should be good to go by saving seven favorite strings (dropping "none" at the
fourth Position, "raster" at seventh position, and maybe also "vrectangle" at the
tenth position - just because it sounds similar in shape to the ordinary. "rectangle").

20

We can then create di�erent shapes from the numerically transformed factor levels
of this variable:

best_shapes <- shapes()[c(1,2,3,5,7,8,9)]

plot(net, layout=norm_mat2, rescale=F, edge.width=.5,

vertex.shape = best_shapes[as.numeric(

factor(V(net)$Rolle_aggregiert))],

vertex.color= "white", vertex.label=V(net)$Label,

vertex.frame.color="#555555", vertex.size= 9+degrees/9,

vertex.label.cex=0.5+degrees*0.008, vertex.label.family=

"CM Sans", vertex.label.font=2)

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

SR9

SR10

SR11

SR12

SR13

SR14

SR15

SR16

SR17

SR18

SR19

SR20

SR21

SR22

SR23

SR24

SR25

SR26

SR27

SR28

SR29 SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37

SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51

SR52

SR53

SR54

SR55

SR56

SR57

SR58

SR59

P1

P2

P3
P4

P5

P6

P7

P8

P9
P10

P11

P12

P13

U1

U2

U3

Log1

Log2

Log3

Log4

Log5

Log6

Log7

Log8

Log9

Log10

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

Sch1

Sch2

Sch3

Sch4

Sch5

Sch6

Sch7

Sch8

Sch9

Kon1

Kon2

Kon3

Kon4

Sch10

Füh1

Füh2

Füh3

Füh4

Füh5

Füh6

Füh7

Füh8

Füh9

Füh10

Sch11

Sch12

Sch13

Sch14

Sch15

Füh13

Füh12

Füh11

Kon5

A15

A16

Sch16

A17

A18

Kon6

Kon7

Sch17

Sch18

A19

Kon10

Kon11

Kon12

kon8

Kon9

Sch19

Sch20

A20 A21

Füh14

Kon13

Yikes!!!

21

5 Adding PNGs as Shapes

Nice try... but nah. Those built in shapes do not seem to get us very far either.
But what if we could use hand-picked icons instead of those shapes? Well,

actually, we can. The are several di�erent ways of integrating images into network
graphs.

You could for instance install the Gephi plugin Image Preview, then link each
node to an image path and select the option 'Render nodes as images' in the output
panel (see �gure 12). This is however not very �exible and quite memory consuming
and might cause Gephi to crash for large networks.

Figure 12: Linking to images directly in Gephi

Another alternative would be to use the R package qgraph (as demonstrated in
this blog post by Katherine Ognyanova) which has a built-in image property. Yet,
since qgraph and igraph objects are di�erent object classes in R and I do not like
to switch back and forth between them, I personally prefer the following approach,
with which we can directly add to the shape property in igraph:

5.1 Selecting Icons

First we have to store suitable PNG �les in a folder on our computer. Suitable
means that the PNGs should 1) have a transparent background (so that there
are no areas unintentionally overshadowing parts of the network's edges), 2) be
�lled (otherwise the transparent background will cause edges to 'poke' through the
icons), and 3) have the right dimensions (usually four, one for each rgb channel -
red, green, blue, and alpha).

My personal go-to approach to assemble images that meet those criteria is to
browse icons on �aticon.com with the �lter 'lineal color' selected (see �gure 13).

Figure 13: Selecting images

This way, I get �lled images with sharp edges that I can download all in the
same size (default is 512x512 px, which is usually ideal).

22

https://github.com/chrisxue815/gephi-plugin-image-preview
https://kateto.net/2014/04/facebook-data-collection-and-photo-network-visualization-with-gephi-and-r/
https://www.flaticon.com/

For black and white publications, I then use the command line tool imagemagick
to batch convert all images in a folder to grayscale. Therefore, I simply navigate to
the folder, where my images are at and type mogrify -colorspace Gray * into my
cmd (not the R console!). This leaves you with nice, equally sized grayscale PNGs
with the right color chanels:

Figure 14: Transformed PNGs

5.2 Adding to shapes()

In this Stackover�ow post I came across a neat way to transform those pics into
igraph shapes. For each icon this process consists of three steps:

First, read the associated PNG �le and save it into a variable:

img.1 <- readPNG("img_g/Anwerber.png")

Second, create a function for each icon that creates a rasterImage from this
particular PNG that maps it to the size and coordinates of a given node v:

anw <- function(coords, v=NULL, params) {

vertex.size <- 1/200 * params("vertex", "size")

if (length(vertex.size) != 1 && !is.null(v)) {

vertex.size <- vertex.size[v]

}

rasterImage(img.1,

coords[,1]-vertex.size, coords[,2]-vertex.size,

coords[,1]+vertex.size, coords[,2]+vertex.size)

}

And third, add the plotting function to the shapes() vector:

add_shape("anw", plot=anw)

Now we have to repeat these steps for all images aka shapes we want to add.
After this, in our case the shapes() function yields 16 strings, the ten original
ones plus the six we added ("anw" for "Anwerber"; "fue" for "Führer"; "kon"
for "Kontaktperson"; "pre" for "Prediger", "schleu" for "Schleuser"; "unt" for
"Unterstützer"):

23

https://imagemagick.org/index.php
https://stackoverflow.com/questions/40120912/r-igraph-how-to-plot-vertices-with-mix-of-shapes-and-rasterStackoverflow

shapes()

[1] "anw" "circle" "crectangle" "csquare"

[5] "fue" "kon" "none" "pie"

[9] "pre" "raster" "rectangle" "schleu"

[13] "sphere" "square" "unt" "vrectangle"

From those, we now want to select the right ones and in the right order, so that
the indices of the vector of custom shapes match the indices of the associated levels
of our target variable.

levels(as.factor(V(net)$Rolle_aggregiert))

[1] "Anwerber" "Führungsperson" "Kontaktmann"

[4] "LogSchleu" "Prediger" "sonstigeUnterst"

[7] "SR"

custom_shapes <- shapes()[c(1,5,6,12,9,15,2)]

custom_shapes

[1] "anw" "fue" "kon" "schleu" "pre" "unt" "circle"

Since we'd like the returnees to be displayed as regular nodes with labels, we
keep the "circle" shape (index=2) and, just as before, have to create a new labeling
varible that only contains the values for the returnees:

V(net)$label3 <- ""

V(net)$label3[V(net)$Rolle_aggregiert=="SR"] <-

nodes$Label[V(net)$Rolle_aggregiert=="SR"]

Equipped with all this, we can �nally plot the icon network that does not only
render roles as PNGs but also quite magically adjusts them according to the degree
of a node:

plot(net, layout=norm_mat2, rescale=F, edge.width=.5,

vertex.shape = custom_shapes[as.numeric(factor(

V(net)$Rolle_aggregiert))],

vertex.label=V(net)$label3, vertex.color= "black",

vertex.label.color="white", vertex.frame.color="#555555",

vertex.size= 9+degrees/9, vertex.label.cex=0.5+degrees*0.008,

vertex.label.family="CM Sans", vertex.label.font=2)

24

SR1

SR2

SR3

SR4

SR5

SR6

SR7

SR8

SR9

SR10

SR11

SR12

SR13

SR14

SR15

SR16

SR17

SR18

SR19

SR20

SR21

SR22

SR23

SR24

SR25

SR26

SR27

SR28

SR29 SR30

SR31

SR32

SR33

SR34

SR35

SR36

SR37

SR38

SR39

SR40

SR41

SR42

SR43

SR44

SR45

SR47

SR48

SR49

SR50

SR51

SR52

SR53

SR54

SR55

SR56

SR57

SR58

SR59

6 Saving Network Graphics

Saving high-quality graphics from R and R Studio that are suitable for actual
publications (e.g. in a scienti�c paper or a book) can be quite troublesome because
the preview is not always very trustworthy and di�erent devices also tend to behave
quite di�erently. Whereas di�erent values for the 'edge.width' seem for example to
have hardly any e�ect for the output in the plot panel in R Studio (see �gure 15,
they in fact may make a great di�erence in the �le that is actually saved.

So, though I usually prefer all my graphs to be scalable vector graphics because
they just give me the most �exibility for further editing and can be nicely embedded
into multiple di�erent formats without producing ugly artefacts (e.g. into LaTeX
or word docs for printing or into websites), I hardly ever add the built in svg()

funtion to my R scripts.
Instead, I �nd it easiest to export the graphs into PDF format �rst (and turn

them into SVGs or PNGs if needed with e.g. Inkscape). This way, I can a) use

25

Figure 15: The R Studio plot panel

the built-in preview function and b) activate Cairo scripts which usually make a
good job outputting graphics that look as expected. I therefore click on 'Export'
right above the plot preview and chose PDF. In the window that pops up, I have
to make sure that "Use cairo_pdf device" is enabled and that I give the plot the
name I want it to have.

Figure 16: PDF export dialogue

And now comes the still fumbly part: The device size I choose also a�ects the
sizing of the node labels in the output (see �gure 16). Therefore, I have to alternate
between this window and the preview until I �nd a device size that preserves the
original ratio as much as possible. For most of my plots however, I �nd 5.8 x 5.8
inches to be the perfect size.

26

(a) 5.8 ∗ 5.8 inches (b) 5.4 ∗ 5.4 inches

Figure 17: PDF output with di�erent device size settings

27

	Set-up
	Preparing the data
	Getting the R session ready

	Creating Basic (aka ugly) Networks in R
	Creating a Network Object
	Modifying a Network Graph within R

	Integrating R and Gephi
	Creating Beautiful Layouts with Gephi
	Exporting Gephi Layouts
	Importing Gephi Layouts into R

	Differentiating Nodes
	Adding PNGs as Shapes
	Selecting Icons
	Adding to [on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecode]shapes()

	Saving Network Graphics

